
MALWARE DEVELOPMENT

�1

Writing code is an absolute art and most developers aren’t good at it. Hackers on the other side are
not developers. In my opinion, hacker is someone who takes multiple tools and somehow put them
together. I am not saying thats a bad thing. I am just saying that hackers don’t have the skills to
write everything from the scratch. At the same time they don’t have the discipline. In security
industry there are very few hackers that are good developers as well. Those hackers / good coders
write malware like Stuxnet, flame, duqu etc.

Hacker vs Developer

One doesn't have to be a developer to be in the cyber security industry, and thats a fact. Look
around you, most of the cyber security guys that you work with, aren’t really developers. Even
though they know how to write some python / ruby etc and script things together. So if you aren’t a
developer and you are in the field of cyber security, you are still legit :)

Is coding mandatory?

Should you learn coding?

Learning anything is a plus. If you are in the cyber security industry and you know how to code,
that will give you an edge. So learning some coding is not a bad idea.

!2

Programming language for malware development

Plain old C all they way. Less compilation overhead. Plug-n-play executables. Smaller payload etc. I
guess I am old! If you want to go with Python and convert it into a large binary, go for it. .Net isn’t
bad as well. Chose whatever you feel like and whatever is easy for you.

Here is an example of a malware, written in python

http://udurrani.com/0fff/py.html

!3

http://udurrani.com/0fff/py.html

Malware flow

Most malicious payloads follow a certain flow. Hacker who puts malware together, relies on
functions like CreateProcess(), ShellExecute(), system(), exec() etc. The challenge with this approach
is that the malware leaves a lot of evidence behind. Any EDR solutions, these days can detect a
child or sub process very easily. E.g. if a payload calls netsh command, netsh becomes a child
process of that payload. An EDR solution will pick on this, report it and also push an IOC or IOA
against such flow.

So how does a malicious flow look like?

Well, thats a tough one. Some flows are easy to challenge but some look very legit. Let’s say that
CMD.exe is spawning powershell.exe or cscript.exe, or vice versa. Its not easy to challenge this flow as
it looks legit. But the real question is: What if the attacker doesn’t use any child process????? and
develops a function or uses an API to carry on all the tasks. How would EDR react to that? In most
cases, EDR won’t. EDR can’t hook on every call. Let me give you an example.

Here is a binary that runs arp -a command by using arp.exe command (Password: foo)

http://udurrani.com/0fff/a1.zip

Here is a binary that runs the same functionality without using arp.exe command (Password: foo)

http://udurrani.com/0fff/a2.zip

Test it your self and find out how an EDR would react to it.
 !4

http://udurrani.com/0fff/a1.zip
http://udurrani.com/0fff/a2.zip

Let’s look at some malicious flows

You might be thinking that some of this looks legit?
Exactly!

But my point is: Its easy to detect on such behavior and
thats why security solutions can get this triage spelled out
for you

!5

Then why do malware use such commands?
Many reasons:

Ease of use
Most hackers are great system guys and understand system much better then coding
Avoiding system commands could delay their hacking project / scheme
Developers don’t really have to write clean code or care about vulnerabilities. They are in a win-
win situation. If it lands, GREAT! if it doesn't, lets put a new payload together.

Let me give you one more example, where no system commands are being used:

Payload is initiated as normal user
Payload follows multitasking
It locks everything down
And scans few IP addresses at the same time
Once the scan is complete, it informs the payload and it panics
If payload runs as admin on windows 7, blue screen of death
Windows 10 will panic any way and go to the famous blue screen
So all that is done at the same time with proper IPC and without using any system commands.

In this situation an EDR may pick on the socket() functionality but other stuff, not so much. This payload won’t
hurt your machine but run it on a VM anyway. Before starting, run a packet capture as well.

http://themalware.com/no_command.zip

Yet another example!

!6

http://themalware.com/no_command.zip

Malware must by-pass

Malware’s job is to by-pass existing security barriers and it’s not that difficult.
No product is 100% secure, thats why they keep on adding new features E.g.
with rise of ransomware, some AV’s added a feature to prevent file modification
based on certain behavior(s). Kaspersky added a backup model, where they
would backup modified files and if the behavior is suspicious, the payload is
stopped and files are restored. Sophos hada similar feature, I think it was
Hitman (later acquired by Sophos).

To by-pass this I developed a ransomware that will use a subProcess to encrypt. What does that mean:

 - Payload has 100 worker threads
 - Each worker thread spawns the main payload to encrypt a single file
 - There is an IPC between the threads so we don’t end up encrypting same file twice
 - This way I can control how many files are encrypted / subProcess
 - And the encryption begins

Here is the test link:

https://www.youtube.com/watch?v=whPeRFMBhzY

Recently I noticed a similar technique in a real campaign, where the payload uses a subProcess to
encrypt a file. It’s using one process / file. This means: If there are 5K files, initial payload will have to
spawn 5000 subprocesses to encrypt all files. All sequential though. This means my technique was more
efficient :)

!7

https://www.youtube.com/watch?v=whPeRFMBhzY

Here is the flow of the malware.

PID 1744 is the initial PAYLOAD
PID 1108 is the subprocess to encrypt a single file
PID 1572 is the subprocess to encrypt a single file
PID 1468 is the subprocess to encrypt a single file
PID 2508 is the subprocess to encrypt a single file
..
..
And so on …

AES

!8

Another example of the same malware.
PID 2788 spawning PID 1600, 3044, 2076, 2948,
1956 …

!9

http://udurrani.com/0fff/ff.html

You always need good tools to develop or analyze malware. Some fun tools you can download from the
following link.

Tools

http://udurrani.com/0fff/wbtool/upurs.zip

Another tool for testing reasons

Put the binary on a 64bit machine and execute by running the following command:

webe.exe <portNumber> // Make sure you have a folder called ud (its a prerequisit)
E.g. webe.exe 6000
Now upload an executable from linux, mac or windows machine remotely.

curl -F “ud=@fileName" ipAddressofServer:6000/upload

This will upload and execute the binary file on remote system (Where webe.exe is running).

 You can ONLY upload PE files.

If you want to launch other file formats, let me know or simply call

1-800-OTHERFILEFORMATS
!10

http://udurrani.com/0fff/ff.html
http://udurrani.com/0fff/wbtool/upurs.zip

Exploitation

Even though malware and exploits are very different, its always a good idea to know about exploits

http://udurrani.com/exp0/memory_exploitation.pdf

http://udurrani.com/exp0/memory_exploitation.pdf

Thats it for now, this is just an intro. I am going to write more on this topic and cover multiple malicious techniques
and topics on malware development

!12

